▫️Рекуррентные нейронные сети (recurrent networks, RNN) были придуманы для работы с последовательностями данных, такими как текст или временные ряды. Чтобы сеть могла хранить информацию о предыдущих токенах, было введено понятие внутренней памяти или скрытого состояния (hidden state). В простейшем случае оно выражается одним вектором фиксированной размерности. На каждом шаге в сеть подаются данные, при этом происходит обновление скрытого состояния. После этого по скрытому состоянию предсказывается выходной сигнал. ✍️Традиционные RNN страдают от проблемы исчезающего градиента, когда в процессе обратного распространения ошибки градиенты становятся настолько малыми, что обучение становится очень неэффективным для длинных последовательностей. ▫️Сети с долговременной и кратковременной памятью (Long short term memory, LSTM) были созданы для решения вышеозначенной проблемы. Все рекуррентные сети можно представить в виде цепочки из повторяющихся блоков. В RNN таким блоком обычно является один линейный слой с гиперболическим тангенсом в качестве функции активации. В LSTM повторяющийся блок имеет более сложную структуру, состоящую не из одного, а из четырёх компонентов. Кроме скрытого состояния, в LSTM появляется понятие состояния блока (cell state). Hidden state же теперь передаётся наружу (не только в следующий блок, но и на следующий слой или выход всей сети). Также LSTM может добавлять или удалять определённую информацию из cell state с помощью специальных механизмов, которые называются gates.
Всё это позволяет LSTM более тонко контролировать поток информации, улучшая способность сети обучаться и стать более устойчивой к проблемам, связанным с градиентами.
▫️Рекуррентные нейронные сети (recurrent networks, RNN) были придуманы для работы с последовательностями данных, такими как текст или временные ряды. Чтобы сеть могла хранить информацию о предыдущих токенах, было введено понятие внутренней памяти или скрытого состояния (hidden state). В простейшем случае оно выражается одним вектором фиксированной размерности. На каждом шаге в сеть подаются данные, при этом происходит обновление скрытого состояния. После этого по скрытому состоянию предсказывается выходной сигнал. ✍️Традиционные RNN страдают от проблемы исчезающего градиента, когда в процессе обратного распространения ошибки градиенты становятся настолько малыми, что обучение становится очень неэффективным для длинных последовательностей. ▫️Сети с долговременной и кратковременной памятью (Long short term memory, LSTM) были созданы для решения вышеозначенной проблемы. Все рекуррентные сети можно представить в виде цепочки из повторяющихся блоков. В RNN таким блоком обычно является один линейный слой с гиперболическим тангенсом в качестве функции активации. В LSTM повторяющийся блок имеет более сложную структуру, состоящую не из одного, а из четырёх компонентов. Кроме скрытого состояния, в LSTM появляется понятие состояния блока (cell state). Hidden state же теперь передаётся наружу (не только в следующий блок, но и на следующий слой или выход всей сети). Также LSTM может добавлять или удалять определённую информацию из cell state с помощью специальных механизмов, которые называются gates.
Всё это позволяет LSTM более тонко контролировать поток информации, улучшая способность сети обучаться и стать более устойчивой к проблемам, связанным с градиентами.
#глубокое_обучение
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
In general, many financial experts support their clients’ desire to buy cryptocurrency, but they don’t recommend it unless clients express interest. “The biggest concern for us is if someone wants to invest in crypto and the investment they choose doesn’t do well, and then all of a sudden they can’t send their kids to college,” says Ian Harvey, a certified financial planner (CFP) in New York City. “Then it wasn’t worth the risk.” The speculative nature of cryptocurrency leads some planners to recommend it for clients’ “side” investments. “Some call it a Vegas account,” says Scott Hammel, a CFP in Dallas. “Let’s keep this away from our real long-term perspective, make sure it doesn’t become too large a portion of your portfolio.” In a very real sense, Bitcoin is like a single stock, and advisors wouldn’t recommend putting a sizable part of your portfolio into any one company. At most, planners suggest putting no more than 1% to 10% into Bitcoin if you’re passionate about it. “If it was one stock, you would never allocate any significant portion of your portfolio to it,” Hammel says.
Pinterest (PINS) Stock Sinks As Market Gains
Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%.
Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time.
Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.
Библиотека собеса по Data Science | вопросы с собеседований from ye